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It is shown that on the basis of certain simplifications induced in the physical 
and geometrical dependences, such a “stratification” of a shell can be achiev- 
ed for which the fibers of each of two layers will be deformed just as thin cods 
whose axes agree with the lines of principal curvature of the shell middle suc- 
face. The approach to analyzing shells on the basis of the relationships to be 
obtained below is called the “stratification method’. 

The question of the possibility of representing the computational schemes ofplates 
and shells in the form of a set of intersecting mutually orthogonal cods was, as is known 
[l-j, of interest to L . Euler and J. Bernoulli. In connection with the appearance 
of modern high-speed computers, this idea was discussed in detail in [Z - 51. A 

method was proposed in [6] to decompose the deffecential equations of shell theory 
whereupon the shell would be reduced to a four-layer quasi-cod system continuous in 

each layer. Another variation of the decomposition method is given in [7]. It should 
be noted that the diagonal-free cod analogy was substantially found considerably eacl- 

ier [8] for flexible orthotropic plates. 

Taking account of the Poisson’s ratio represents the greatest difficulty in construct- 
ing cod models. It has been shown on the basis of the V. Z. Vlasov equations of tech- 
nical shell thecry [9] that the membrane stresses in a shell ace independent of the 
Poisson’s ratio upon giving all the tangential boundary conditions in forces. It hence 
follows that if the tangential boundary conditions ace kinematic, then taking account 
of the elastic constants inexactly can affect the stresses noticeably only near the ce- 
ference contour and does not affect the membrane state of stress of the shell as a whole. 
In this connection, it is possible to neglect the influence of the Poisson’s ratio in the 
physical dependences between the normal forces and their corresponding strains. Tak- 

ing correct account of the Poisson’s ratio turns out to be completely realizable in 
considering the shears of the shell middle surface, as well as its bending and torsion. 

As is usually done, we write the shell strain potential energy in the form of a sum 

u = u24 + u,, where, (all the notation is standard) 

D [XP + 2YX1X~ + x*a + 2 (1 - Y) x2] dSl asa 
P 

ue=+ss [ * (&1D + 2 YElea + E2’) + Ghi.19-j dsl dsz 
Q 

Without limiting the generality of the final results, we take a, = S1 and a, = 
S2 as the quantities characterizing the position of point of the middle surface in a 
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curvilinear coordinate system, where Si is the arclength measured along the co- 
ordinate Line as-1 = COnSt , from a certain curve lying entirely within the same 
surface; the Lami parameters Al = As = ‘i = const and the curvature and 

torsion strains in U, are the following: 

The second terms in the expressions for xl, xs as well as the second and third 
terms in the expression for x are on the order of &i / $2, (it is assumed finally that 
all kinds of strain are of identical order of smallness, respectively, i. e., for instance, 

au I asI - au 1 as, - a~ 1 as, , etch 0ne of the results of [lo] is that in the 

formulas for the bending strain parameters, it is allowable to discard components of 
the order of ai / RI without reducing the order of the error determined by using the 

Kirchhoff - Love hypotheses. Taking the above into account, it can be assumed that 

In addition to ux we consider a somewhat different functional 

& is easy to see by direct substi~tion that all the ECuler equations for U,* (for a 
variation in the kinematic parameters) agree completely with the corresponding equa- 
tions for u,. Hence, keeping in mind obtai~ng the equation in displacements by 
a variational means, we shall use a new, more convenient functional for this investiga- 
tion in writing the strain potential energy (here the absence of the product (a220 I 

88,s) x (d2w / asa2)) in 0,” turns out to be essential). 
Taking account of the geometric dependences for the angles of rotation of the 

normals 6, and 6, , and discarding terms of the order of et / RJ in the ex- 

pressions relating these angles to the mixed derivative d”w / 8sr&s, we can assume 

in the functional U,” 

by app~ding the equalities 
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as additional conditions, 
Turning to the functional U,, we can, in conformity with the simplification stip- 

ulated above, neglect the influence of the Poisson’s ratio, i. e., discard the compon- 
ent 2vel&~. We write the term dependent on the shear strain as 

Ghw2 = 2Gh E( 
where the angle of rotation of a shell element around the normal is expressed by the 
formula [lo) 

For the usual expressions for er, 8s we have 

Yf the distributed loads qr, qz and qn as well as the ~s~bnted moments ml, 
ma act on the shell, then the potential (total energy) of the system is 

where it can be considered that contour forces and moments applied to the free edges 
are included in the work of the external loads by using the delta function. 

Let us represent II as the sum of two components 

rf = n, + &I, K = a,,* + Uer + Ani 

We write down in detail only the expressions for the terms forming the first com- 
ponent 
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Here the superscript in the notations of the kinematic parameters indicates the 
number of the layer (1 or 2) to which this parameter belongs. 

The work of the loads q1 and m2 is referred to the first layer and the work of 
the loads qa and ml to the second upon insertion of the functionals AIlI, and 
analogously AII, , The work of the loads qn is divided equally between the two 
layers. Since the similar parameters of both layers should be equal, then the left sid- 
es of the appropriate additional conditions with the Lagrangean multipliers Al.,, A,, 
ha, &, p2, !-~a are included in the final functional @ to be minimized 

G? =~~ss{~~(~(l} - u’“‘) + 3L, (n(l) - r.712 1) + 

n 

Varying dc, over all the kinematic parameters and the Lagrangean multipliers, we 
obtain a complete system of equations to determine these unknowns. Let us just in- 
dicate the result of the variation over the kinematic parameters referring to the first 

layer (i, e., over w(l), fb2fl), ~(1) f u(l), @J”) 

@ D 
as,8 I ( 

$2Jl) 
-?@-+ +d~f+Y+?+-- 

(1) 

The first of these equations describes the bending of infinitely narrow “rods” of 

the first layer, the second describes their tonion, the third the tension, the fourthand 

fifth the shear strain in the shell middle surface. 

Let us clarify the physical meaning of the Lagrangean multiplier pl. It is 

known that the torque is replaced by equivalent shear and transverse forces in form- 
ulating the boundary conditions. Completely analogously, the exterior (relative to 

the rods of the first layer) linear moment p1 can be replaced by the normal load 

Qpf 
0 

= dp, / as, and the tangential load qlo = pl / RI (Fig. 1). The loads 

mentioned are in the first and third equations of (1). 
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Thus, the moment hI acts on the “rods” of the first direction in the normal 

plane containing the direction e, . 
fin@) a moment 

It turns out that in the variation with respect to 
(- pI) acts at the same point on the rod of the second direction 

in the same plane. In other words pr is the moment of the interaction between rods 
of two layers which assures the equality of the angles of rotation of the normal around 
the direction ea. The moment pa performs an analogous role; li,, &, ha are 
the tangential and normal interaction loads, and pa is the moment acting in a plane 

tangent to the middle surface. 

Fig. 1 

In order to clarify the singularities of the work of the “stratified’ shell in shear, 
we consider a rod whose axis agrees w&h the contour of the cylindrical shell cross- 

section(i.e., we set Rs = co) and we consider the shell thickness h constant. 
The fourth equation then becomes 

or 

where the shear strain 0 should be identical for rods of both directions upon compli- 
ance with the additional conditions included in a. This last equation shows that the 

shear forces S fZ = Ghw (Fig. 2) are equilibrated by the given load qz and the 
interaction load ha. The fifth equation can be represented in the form: 

srs -t P3 = 0 

from which it is seen that the interaction moment pa cancels the rotating effect of 

the shear forces. Therefore, the moment ps replaces action of the shear forces 

s 21 paired 
Fig. 2 

with S12 for the first layer since the former are absent in rods of this 
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layer. 
As was mentioned, since the contour forces were included in the functional hIIt, 

then compliance with the static boundary conditions in the Saint Venant sense is assur- 

ed: at those edges where the loads are given and the displacements are varied, the 
internal forces in the rods are statically equivalent to these loads. The kinematic 
boundary conditions are easily taken into account by giving the rods the appropriate 

reference framing. 

Therefore, there are two families of rods, between which six ordinary (rod) inter- 
action forces act at each point of the middle surface. For comparison, we mention 
that the number of interaction forces is thirteen in the method of separation [6fl and 

nine for the zero Poisson’s ratio in all the physical dependences. 
Let us present three simple examples of stratification of two-dimensional objects. 

1”. We set s1 3 x, s, G y, mi = m, = u = v = 6, = 0 under the action of 
a normal load q,, on a plate. The equations to which the rods of each of the layers 

are subject have the form 

under the additional conditions 

These equations describe the bending and torsion of a plane orthogonal system of 
straight beams and are,as a set, equivalent to the Sophie Germain equation. 

2’. For the axisymmetric strain of a circular cylindrical shell of radius R with 

axis parallel to the z axis of a Cartesian coordinate system, we obtain under the act- 
ion of normal and longitudinal loads 

d4&) 1 aIf (1) 
D -=~Q,--m 

dz4 
-E*h- = qx 

The first two equations describe the bending, and tension of the longitudinal; rods, 
respectively, and the third is for the compression of the circumferential rods. It is 

clear that the set of the first and third equations (under the condition W(I) = w@)) is 
equivalent to the usual equation of symmetric cylindrical shell bending. 

3’. For a shallow shell under the load qn we take s1 E xl, s2 z z2, u s ul, v E 

u2 l 

Let US also assume that Rij & 0, pi / Ri =E: 0 Vi, j. Then a system of equa- 

tions 

(2) 
Pz#) E*h 

D art +TEf 

aPi 
--&&-(-i)f&-~=o 

* 

@#gyf be. 

-D---zF- +&q-f =o, 
* 

-EE*h”i+(-i)ihi=o 
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2Gh a;: -+ (-I)‘X,~ =O, -Gho(')+b= 0 
i 

is obtained for the rods of each of the directions (i = 1, 2). 
From the last relationship follows ())a) = ,w E o , and furthermore S,, = 

S,i = Gho s S. Taking Ni = E*he, and N2 = E*he,, we obtain the possibil- 
ity of introducing the stress function \P. The tangential equilibrium equations are 
thereby satisfied automatically, which can be considered the result of the third and 
fourth relationships in (2) in this case. The appropriate combination of the first and 
second equations in (2) yield (for w(l) = UJ(‘~ zz w, B$ = - aw / a+~) 

i azyr 1 azY 
~V4w--~-_.~==4, 

To obtain the second governing equation of shallow shell theory, we take into 
account ,that from the geometric dependences 

&4(i) ,(*) . 
e*= - + T s Ql(‘) = 2 

[ 

a$J_* 
ax, - + (- 1)’ tvf) axi 12 I 

the strain compatibility condition 

follows under the additional requirements &i(l) = ui@), 6,(l) = &,f2) , from which 
the desired relationship is later indeed obtained by the usual means. The set of syst- 
ems of the type (2) for rods of two directions is therefore equivalent to the system of 
governing equations of shallow shell theory. 

In conclusion, let us note that effective algorithms for the approximate analysis 
of shells as conditional rod systems can be constructed on the basis of the mentioned 

method of stratification. 
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